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Abstract. The Southern Ocean plays a vital role in global biogeochemical cycles, yet the quality of its representation in
10 Earth System Models (ESMs) remains unquantified. This study evaluates the performance of 14 Coupled Model
Intercomparison Project Phase 6 (CMIP6) models in simulating key biogeochemical variables south of 30°S, including
austral-summer surface chlorophyll, deep chlorophyll maxima (DCMs), nitrate, silicate, dissolved iron, and yearly
particulate organic carbon (POC). Model output for the period 2000-2014 is compared to multiple observational datasets,
such as Copernicus for chlorophyll and POC, the World Ocean Atlas (WOA) for nitrate and silicate, and GEOTRACES for
15 dissolved iron. Model performance is assessed using statistical metrics including mean bias error (MBE), standardised
standard deviation (SSD), root mean squared deviation (RMSD), and correlation coefficient (CC). The results reveal
substantial inter-model variability, with individual models exhibiting strengths in simulating different variables. GFDL-
ESM4 best reproduces chlorophyll and DCM patterns, IPSL-CM6A-LR performs well for nutrients, MIROC-ES2L for
dissolved iron, and CMCC-ESM2 for POC. Based on composite rankings, the top-performing models are IPSL-CM6A-LR,
20 GFDL-ESM4, CMCC-ESM2, UKESM1-0-LL, and CNRM-ESM2-1. This work underscores the importance of multi-model
evaluation for identifying model strengths and guiding future improvements in biogeochemical (BGC) model development,

particularly in the context of understanding and projecting Southern Ocean biogeochemistry under climate change.

1 Introduction

Climate change is a critical global challenge, driving major shifts in marine conditions and ecosystems. The Southern Ocean,
25  covering 30% of the global ocean, plays a crucial role in the oceanic carbon and nutrient cycles, absorbing over 40% of
anthropogenic CO and 70% of human-induced warming (Gruber et al., 2019; Petrou et al., 2016; Xue et al., 2024). The
Southern Ocean is characterised by complex interactions among physical circulation, biogeochemistry, and biological
productivity, making it a challenge to model (Henley et al., 2020; Morley et al., 2020). The powerful eastward-moving

Antarctic Circumpolar Current (ACC), one of the Earth’s strongest currents, connects ocean basins and regulates global
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30 climate and ocean circulation, supports diverse marine ecosystems, and distributes nutrients (Boning et al., 2008; Rintoul et
al., 2001; Lopes et al., 2011; Song, 2020). The upwelling of deep, nutrient-rich waters, driven by ACC, supports
phytoplankton growth, influencing global carbon sequestration and ecosystem dynamics (Venables and Moore, 2010;
Morrison et al., 2015; Hunt et al., 2021; Pollard et al., 2006). This complex region of both physical and biological processes
is important due to its significant impact on global climate regulation, carbon sequestration, and the health of marine

35 ecosystems.

Phytoplankton, particularly silicifying diatoms, are a key component of the Southern Ocean food web and the global carbon
cycle, playing a crucial role in carbon sequestration and nutrient cycling (Deppeler and Davidson, 2017; Baldry et al., 2020;
Petrou et al., 2016; Nissen and Vogt, 2021; Timmermans et al., 2004; Hoffmann et al., 2008). Their biomass and primary
production are often assessed through chlorophyll concentrations, which serve as an essential indicator in oceanic carbon

40 fixation and ecosystem productivity (Carranza and Gille, 2015; Johnson et al., 2013). However, despite the abundance of
macronutrients such as nitrate and silicate, phytoplankton growth is frequently constrained by light limitation and iron
deficiency, both of which regulate their distribution and productivity (Boyd and Ellwood, 2010; Boyd, 2002). In response to
these physiochemical conditions, deep chlorophyll maxima (DCMs) have been observed in nutrient-stratified waters during
austral summer in the Southern Ocean, indicating robust phytoplankton production in the subsurface layer (Boyd et al., 2024;

45 Cornec et al., 2021; Cullen, 1982; Cullen, 2015; Hopkinson and Barbeau, 2008; Li et al., 2012). These DCMs contribute
significantly to the regional carbon cycle, for example, approximately 40% of primary production in the Southern Ocean
occurs below the mixed layer (Vives et al., 2024), and support marine food webs by sustaining primary production below the
surface, where light and nutrient conditions are more favourable for certain phytoplankton communities (Signorini et al.,
2015; Cornec et al., 2021; Sauzeéde et al., 2018).

50 Ocean biogeochemical (BGC) modules, are an important component of coupled Earth system models (ESMs), and are
indispensable for understanding the complicated physical and biogeochemical processes in the ocean (Follows and
Dutkiewicz, 2011; Séférian et al., 2020). Depending on their complexity, these models simulate the cycles of key elements
such as carbon, oxygen, nitrogen, phosphorus, silicate, and iron, and organisms including phytoplankton, zooplankton and
bacteria, which are vital for marine ecosystems and global climate regulation (Dunne et al., 2020; Aumont et al., 2015; Pak

55 et al, 2021; Ilyina et al., 2013). BGC models enable researchers to investigate how changes in environmental conditions,
such as temperature, light, and nutrient availability, impact marine biogeochemistry and ecosystem dynamics (Kwiatkowski
et al., 2020). They are particularly valuable for studying regions like the Southern Ocean, where observational data are
limited, and the interactions between physical and biogeochemical processes are highly complex (Tagliabue et al., 2017;
Lauderdale et al., 2017). Despite their significance, BGC models face considerable challenges, including the need for precise

60 parameterisation of key biological processes, accurate representation of small-scale processes, and effective integration of

diverse data sources (Ackermann et al., 2024; Beadling et al., 2019).
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The Coupled Model Intercomparison Project Phase 6 (CMIP6) represents the latest advancement in climate modelling,
providing a standardised framework for evaluating ESMs across various simulations under different climate scenarios
(Eyring et al., 2016; O'neill et al., 2016; Meehl et al., 2020). Compared to previous phases, CMIP6 models feature higher
65 spatial resolution, improved physical processes, and enhanced biogeochemical components, including expanded
phytoplankton functional types, refined biogeochemical cycle representations and optimised parameterisation (Séférian et
al., 2020; Kwiatkowski et al., 2020). However, significant discrepancies persist in biogeochemical performance due to
variations in BGC model structures, parameterisation, and ocean physics (Séférian et al., 2020). Evaluating CMIP6 models
highlights these differences, offering insights for future model development and refinement (Kwiatkowski et al., 2020;
70  Séférian et al., 2020; Hauck et al., 2015).
While some studies have assessed the performance of CMIP6 models in simulating biogeochemical variables globally and
regionally, a comprehensive analysis of chlorophyll, nutrient distribution, and DCM characteristics in the Southern Ocean
remains unexplored. Marshal et al. (2024) evaluated chlorophyll, phytoplankton, nitrate and dissolved oxygen across 13
CMIP6 models in the South China Sea, ranking them using statistical metrics to identify the five best-performing models.
75 Fisher et al. (2025) synthesised CMIP6 outputs to examine climate-driven shifts in Southern Ocean primary production,
projecting a 30% increase in Antarctic zone productivity under a high-emission (SSP5-8.5) scenario, albeit with regional
variations. Séférian et al. (2020) compared CMIP5 and CMIP6 models, demonstrating improved CMIP6 biogeochemical
representations, including chlorophyll, dissolved oxygen, silicate and nitrate, due to more comprehensive biogeochemical
cycles and Earth system interactions. Rohr et al. (2023) analysed 11 CMIP6 models and found that zooplankton grazing
80 parameterisation introduced uncertainty in marine carbon cycle projections. These studies underscore the need for further
evaluation of the CMIP6 models to assess the impact of biogeochemical processes and parameterisation on model
performance.
In this paper, we evaluate biogeochemical variables-including chlorophyll, silicate, nitrate and dissolved iron, across 12
CMIP6 models and assess their performance in representing DCMs in the Southern Ocean. Sect. 2 details the observed and
85 simulated and the statistical analysis methods. Sect. 3 presents an inter-model evaluation of each biogeochemical variable.
Sect. 4 discusses the ocean vertical carbon structure, model performance, as well as avenues for improvement. Sect. 5

provides a summary of our findings.

2 Data and methods
2.1 Study region

90 This study focuses on the open waters of the Southern Ocean (south of 30°S). We divide the Southern Ocean into four zones:
the subtropical zone (STZ), subantarctic zone (SAZ), polar front zone (PFZ) and Antarctic zone (AZ) (Fig. 1). These zones

are separated by three key fronts: the subtropical front, subantarctic front and polar front, which are defined by distinct

3
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physical and biogeochemical properties (Orsi et al., 1995). We compare the CMIP6 model outputs of chlorophyll, nitrate,

silicate and dissolved iron across these zones and across the entire Southern Ocean.

95 2.2 CMIP6 datasets and availability

We obtained outputs from 14 CMIP6 models from the Earth System Grid Federation (ESGF) Nodes (Cinquini et al., 2014).
Specifically, we collected data from the historical experiment for model evaluation, using the ensemble member rlilp1fl for
most models, while r1ilp1f2 was used for CNRM-ESM2-1, MIROC-ES2L, and UKESM1-0-LL. Dissolved iron and carbon
data of ACCESS-ESM1-5 were collected from National Computational Infrastructure (NCI). This includes monthly data for
100 chlorophyll, nitrate, silicate, and dissolved iron, as well as yearly data for particulate organic carbon (POC), which comprises
phytoplankton, zooplankton, detritus, and bacteria (see Sect. 2.4 for details). These data were also used to compare
chlorophyll and DCM distribution. The selected CMIP6 models, their properties and available variables are detailed in Table
1. To ensure consistency, we regridded all outputs to a 1°x1° common horizontal resolution using bilinear interpolation in
Climate Data Operators (CDO) software (Schulzweida, 2023), covering the time range from January 2000 to December
105 2014.

Table 1. List of 14 CMIP6 models utilised, detailing the ESM name, coupled ocean biogeochemical model (OBGCM) name,
averaged horizontal resolution and variables with available data. All variable abbreviations and their long names: chl (mass
concentration of phytoplankton expressed as chlorophyll in sea water), no3 (dissolved nitrate concentration), si (total dissolved
inorganic silicon concentration), dfe (dissolved iron concentration), phyc (phytoplankton carbon concentration), zooc (zooplankton
110  carbon concentration), detoc (mole concentration of organic detritus expressed as carbon in seawater), bacc (bacterial carbon

concentration).

ESM OBGCM Variable ESM and OBGCM Reference
ACCESS-ESM1-5 WOMBAT chl, no3, dfe, phyc, zooc, detoc Zichn et al. (2020); Oke et al. (2013)
CanESMS5 CMOC chl, no3, phyc, zooc, detoc Swart et al. (2019); Zahariev et al. (2007)
CESM2 MARBL chl, no3, si, dfe, phyc, zooc Danabasoglu et al. (2020); Long et al. (2021)
CMCC-ESM2 BFM v5.2 chl, no3, si, dfe, phyc, zooc, detoc, bacc Lovato et al. (2022); Vichi et al. (2015)
CNRM-ESM2-1 PISCES-v2-gas  chl, no3, si, dfe, phyc, zooc, detoc Séférian et al. (2019); (Skyllas, 2018)
GFDL-ESM4 COLBALTv2 chl, no3, si, dfe, phyc, zooc, detoc, bacc Dunne et al. (2020); Stock et al. (2020)
IPSL-CM6A-LR PISCES-v2 chl, no3, si, dfe, phyc, zooc, detoc Boucher et al. (2020); Aumont et al. (2015)
MIROC-ES2L OECO-v2 chl, no3, dfe, phyc, zooc Hajima et al. (2020)

MPI-ESM-1-2-HAM  HAMOCC6 chl, no3, si, dfe, phyc, zooc, detoc Neubauer et al. (2019); Ilyina et al. (2013)
MPI-ESM1-2-HR HAMOCC6 chl, no3, si, dfe, phyc, zooc, detoc Miiller et al. (2018); Ilyina et al. (2013)
MPI-ESM1-2-LR HAMOCC6 chl, no3, si, dfe, phyc, zooc, detoc Mauritsen et al. (2019); Ilyina et al. (2013)
NorESM2-LM HAMOCC chl, no3, si, dfe, phyc, zooc, detoc Tjiputra et al. (2020)

NorESM2-MM HAMOCC chl, no3, si, dfe, phyc, zooc, detoc Tjiputra et al. (2020)

UKESM1-0-LL MEDUSA-2.0 chl, no3, si, dfe, phyc, zooc, detoc Sellar et al. (2019); (Yool et al., 2013)

4



https://doi.org/10.5194/egusphere-2025-2633
Preprint. Discussion started: 25 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

2.3 Observed datasets and availability

Observed chlorophyll data was obtained from the Copernicus Global Ocean 3D Chlorophyll-a Concentration, Particulate
115 Backscattering coefficient and Particulate Organic Carbon (Sauzéde et al., 2016), which estimates chlorophyll and POC

using a neural network method. This reprocessed dataset has a 0.25°x0.25° horizontal resolution, covering 36 vertical levels

from the surface to 1000 m depth. Observed nitrate and silicate data were sourced from the World Ocean Atlas (WOA) 2018

(Garcia et al., 2019), representing climatological averages from 1955 to 2017. Observed dissolved iron data were obtained

from GEOTRACES (Tagliabue et al., 2012), which compiles bottle-sampled dissolved iron measurements from 2001 to
120 2014.

2.4 Data analysis

To evaluate the performance of CMIP6 models in simulating biogeochemical variables, we compared observations with
model outputs for chlorophyll, nitrate, silicate and dissolved iron (Sect. 3.1), assessed DCM (peak of chlorophyll
concentration in the subsurface) representation and characteristics (Sect. 3.2), analysed particulate organic carbon (Sect. 3.3),
125  and presented model rankings by variable (Sect. 3.4).
Since Southern Ocean DCMs predominantly occur during austral summer (Cornec et al., 2021; Prakash and Bhaskar, 2024),
all datasets (except dissolved iron and POC) were restricted to December, January and February (DJF). We calculated
temporal averages for CMIP6-simulated variables and observed chlorophyll over DJF from 2000 to 2014. Similarly, we
computed DJF-averaged nitrate and silicate from observations. Given that dissolved iron observations are derived from
130  bottle-sampled data rather than gridded products, we selected observations from depths less than 10 m to represent surface
iron concentrations and interpolated CMIP6 outputs to these observation sites.
In cases where CMIP6 models do not provide a specific variable representing total particulate organic carbon (POC), we
manually derive it by summing different species of POC. The simulated POC concentration in this paper is calculated as the
sum of phytoplankton carbon, zooplankton carbon, detrital organic carbon (absent in CESM2 and unavailable in MIROC-
135 ES2L), and bacterial carbon (optional; available only in CMCC-ESM2 and GFDL-ESM4). Because many CMIP6 models
lack monthly POC-related data, we utilise yearly data instead, as carbon export predominantly occurs during summer months
(Boyd et al., 2019; Buesseler et al., 2007; Blain et al., 2007).
To quantify model performance, we calculated spatial variations, mean bias error (MBE), standardised standard deviation
(SSD), correlation coefficient (CC), and root mean squared deviation (RMSD) for chlorophyll, nitrate, silicate and dissolved
140 iron. We visualised spatial variations using Southern Ocean maps, MBE in bar charts, SSD, CC and RMSD using Taylor
Diagram (TD) to illustrate the agreement between models and observations (Taylor, 2001). The TDs and their related
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statistics-SSD, CC, and RMSD-are provided in Supplementary Materials. The equations for MBE, SSD, CC, and RMSD are

presented below:
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where x; and y; represent the observed and simulated values, respectively. X and y denote the mean values of observations
and simulations. n is the number of grid points in the datasets.

150 DCMs are identified as the vertical peak of chlorophyll concentration, where the chlorophyll value exceeds 1.1 times the
surface chlorophyll concentration. The 1.1 threshold is applied to account for potential measurement errors in the
observation. To evaluate DCM characteristics, we calculated peak chlorophyll concentration at the identified DCM depth
and frequency of DCM occurrence, which is defined as the number of grid points where DCMs are detected.

The assessment of CMIP6 model performance relies on the ranking of four statistical metrics, containing MBE, SSD,

155 RMSD, and CC for chlorophyll, nitrate, silicate, dissolved iron, and POC. For the evaluation of DCMs, both the chlorophyll
rank and DCM occurrence frequency are considered. The overall performance of each CMIP6 model is represented by the
average rank across these six variables (Sect. 3.4).

All data processing and analysis were performed using MATLAB R2024a and its numerical toolboxes. Maps were generated
using the M_Map toolbox (Pawlowicz, 2020). Taylor diagrams in supplementary materials were generated using MATLAB

160 functions from Haroon Haider (https://www.youtube.com/@EngrHaroonHaider, last accessed: 22 April 2025).

3 Results
3.1 Southern Ocean biogeochemistry

We evaluate the performance of 14 CMIP6 models in simulating Southern Ocean biogeochemistry by comparing their
outputs for chlorophyll, nitrate, silicate, and dissolved iron with observational data. The surface chlorophyll concentration in
165  the Southern Ocean exhibits a general increase from north to south, reaching its highest concentrations in the coastal regions
of Antarctica (Fig. 1), with some exceptions associated with island wake effects related to continental iron input (Blain et al.,

2007). In contrast, the chlorophyll simulations exhibit significant discrepancies across models. The three MPI-ESM models,

6
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MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MPI-ESM1-2-LR, tend to overestimate chlorophyll concentrations throughout
the Southern Ocean, with MBEs of 1.0, 1.8 and 0.8 mg/m?® (Fig. 2), respectively, compared to a mean chlorophyll

170  concentration of only 0.6 mg/m® in observations. Conversely, the CanESM5, CMCC-ESM2, CNRM-ESM2-1, and IPSL-
CM6A-LR models underestimate chlorophyll concentrations (Figs. 1 and 2). The ACCESS-ESM1-5, CESM2, MIROC-
ES2L, NorESM2-LM, NorESM2-MM, and UKESM1-0-LL models exhibit small and negative MBEs for the entire Southern
Ocean but showed opposing biases across regions. For instance, they overestimate chlorophyll concentrations north of the
subtropical front and underestimated concentrations to the south (Fig. 2). The GFDL-ESM4 model provides the most

175  accurate simulation of chlorophyll concentration north of the polar front but underestimates concentrations south of the polar
front (Fig. 1).

CanES CMCC-E2

ACCESS-ESM1-5 CNRM-ESM2-1
o> NN

S-avtoo
Socooo T«

MIROC-ES2L
NN

GFDL-ESM4 IPSL-CM6A-LR MPI-ESM-1-2-HAM MPI-ESM1-2-HR
> NN AN NN

©
~2an02

Chlorophyll (mg m'3)

MPI-ESM1-2-LR NorESM2-LM
aN

P
€
=3
£

[N
2
S
o
o
=
(@]

2

Figure 1: Observed surface chlorophyll concentrations from Copernicus in DJF and spatial biases of surface chlorophyll
concentrations for 14 CMIP6 models (model chlorophyll — Copernicus chlorophyll) in DJF for the Southern Ocean (>30°S). Black

180 dashed lines in the maps denote the subtropical front, the subantarctic front, and the polar front, from north to south. Grey areas
denote regions where no data are available.

When considering other metrics such as standardised standard deviation (SSD), root mean-squared deviation (RMSD), and
correlation coefficient (CC), we find that among the models, GFDL-ESM4, IPSL-CM6A-LR, and CMCC-ESM2 have the
lowest RMSD, small bias errors, and CC values above 0.6, indicating that they were the best-performing models for
185 simulating the distribution of chlorophyll across the Southern Ocean (Fig. S1 and Table S1). In contrast, the three MPI-
ESMs are less reliable due to their overestimation of chlorophyll concentration. Additionally, the ACCESS-ESM1-5,
CanESMS5, and NorESMs models exhibit poor performance, such as their low CC (<0.2), despite moderate bias errors (Fig.
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S1 and Table S1). The remaining models, including CESM2, CNRM-ESM2-1, MIROC-ES2L, and UKESM1-0-LL, exhibit

moderate performance in simulating chlorophyll.

25 T T T T T T T T T
- I so
stz
2 sz ||
. CpFz
o Az ||
e 15
(o]
£
=1 4
<
iy
& 05 i
o
C
g 0
-0.5 —
1 | | | | | | | | | | | | | |
5 \o] L L X 03 « W & < W b A
N &5\\ o("%“\ g/g\\ N X/,gv\ @Q’P‘» Pl 2 \ﬂx\ N A3 \\\’L’@ AV
4-3,?/ o Y \l\’?’ oV ) A 6\\\ =) (,/% 5\\
oo OV G T e W @ o @ T
o
190 ¥ W

Figure 2: The mean bias errors in surface chlorophyll concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. All MBEs and means in each region are
calculated using area-weighted averages.

Nitrate, a key macronutrient that regulates phytoplankton growth and primary production, is abundant in the Southern
195  Ocean, particularly south of 50°S (Fig. 3). Three MPI-ESMs (MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MPI-ESM1-2-
LR) underestimate nitrate concentrations, with MBEs of -4.7, -5.8, and -3.5 mmol/m? (Fig. 4), respectively, compared to the
observed mean surface nitrate concentration of 11.9 mmol/m? from WOA. This underestimation may be linked to the high
simulated chlorophyll levels, which could lead to excessive nutrient consumption. In addition, the CESM2, CMCC-ESM2,
and GFDL-ESM4 models also underestimate nitrate concentrations (Fig. 3). In contrast, the ACCESS-ESM1-5, CanESMS,
200 CNRM-ESM2-1, MIROC-ES2L, NorESM2-LM, NorESM2-MM, and UKESMI1-0-LL models overestimate nitrate
concentration, although the two NorESMs underestimate it in the Antarctic zone. Among all models, IPSL-CM6A-LR has

the best performance, with the lowest MBE of 0.29 mmol/m? and a relative error of just 2.43% (Fig. 4).
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Figure 3: Observed surface nitrate concentrations from WOA in DJF and spatial biases of surface nitrate concentrations for 14
205 CMIP6 models (model nitrate — WOA nitrate) in DJF for the Southern Ocean (>30°S).

Among the 14 CMIP6 models, IPSL-CM6A-LR, GFDL-ESM4, and CNRM-ESM2-1 produce the most accurate simulations
of surface nitrate concentration for the Southern Ocean. They exhibit the lowest RMSD (<0.3), minimal MBE (absolute
MBE < 4 mmol/m?), high CC (>0.95), and SSDs close to 1, indicating strong agreement with observations (Fig. S2 and
Table S2). Conversely, the three MPI-ESMs models produce less accurate simulations of surface nitrate concentration for the

210 Southern Ocean due to their large bias errors and significant deviations (represented by SSD, RMSD, and CC on a Taylor
diagram) (Fig. S2 and Table S2). The remaining models including ACCESS-ESM1-5, CanESMS, CESM2, CMCC-ESM2,
MIROC-ES2L, NorESM2-LM, NorESM2-MM and UKESM1-0-LL demonstrate moderate performance.
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Figure 4: The mean bias errors in surface nitrate concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the
215 subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF.

Among the CMIP6 models analysed, silicate concentrations are generally overestimated across the Southern Ocean (Fig. 5).
The three MPI-ESMs exhibit the most significant overestimation, with MBEs exceeding 30 mmol/m? (Fig. 6), over twice the
observed surface silicate concentration of 12.7 mmol/m? from WOA. The CMCC-ESM2, NorESM2-LM, NorESM2-MM,
and UKESM1-0-LL models also show large positive biases, with their mean silicate concentrations roughly double that of
220 observed values (Fig. 6). The CMCC-ESM2 and UKESMI1-0-LL models underestimate silicate concentrations in the
subtropical zone (STZ), while the two NorESMs models underestimate silicate concentrations in the Ross Sea, Weddell Sea,
and adjacent waters (Fig. 5). CESM2, CNRM-ESM2-1, GFDL-ESM4, and IPSL-CM6A-LR exhibit the lowest positive
MBEs among the models (Fig. 6). and underestimate silicate concentrations in the STZ. Interestingly, in some regions
around Antarctica, simulated silicate concentrations are lower than observations, particularly in areas where the GFDL-
225 ESM4 and IPSL-CM6A-LR models overestimate chlorophyll (Fig. 5), suggesting a possible link between silicate availability
and diatom growth. Three models, including ACCESS-ESM1-5, CanESMS5, and MIROC-ES2L are excluded from the
silicate comparison because they do not include diatoms as one of their phytoplankton species or silicate as a nutrient

variable.

10



https://doi.org/10.5194/egusphere-2025-2633
Preprint. Discussion started: 25 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

CNRM-ESM2-1
e N

— ] GFDL-ESM4 IPSL-CM6A-LR MIROC-ES2L" MPI-ESM-1-2-HAM
0 20 40 60 80 oo
Si (mmol m3)

MPI-ESM1-2-HR

MPI-ESM1-2-LR NorESM2-LM NorESM2-MM UKESM1-0-LL
P

230  Figure 5: Observed surface silicate concentrations from WOA in DJF and spatial biases of surface silicate concentrations for 14
CMIP6 models (model silicate — WOA silicate) in DJF for the Southern Ocean (>30°S). Models with unavailable silicate are
labelled with *.

Among the 11 CMIP6 models with available silicate data, IPSL-CM6A-LR is the best-performing model for representing
silicate distribution across the Southern Ocean. It has the lowest MBE (1.50 mmol/m?, compared to the observation of 12.65
235 mmol/m?), an SSD closest to 1 (1.04), the lowest RMSD (0.37), and the highest CC (0.94) (Fig. S3 and Table S3), making it
the most reliable model for simulating silicate concentrations. Following IPSL-CM6A-LR, the CNRM-ESM2-1, GFDL-
ESM4, and CESM2 models also show relatively good performance, although their statistical metrics are not as strong as
IPSL-CM6A-LR. The remaining models, CMCC-ESM2, MPI-ESMs, NorESMs, and UKESM1-0-LL, are less reliable due to

their large bias errors, which suggests significant discrepancies in their silicate simulations.
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Figure 6: The mean bias errors in surface silicate concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. Models with unavailable silicate are
labelled with *.

Dissolved iron concentrations in the Southern Ocean are generally low in open waters and higher in coastal regions, as
245 observed from GEOTRACES data (Fig. 7). Among the CMIP6 models analysed, most tend to underestimate dissolved iron
concentrations, with MBEs ranging from -0.06 to -0.28 pmol/m? compared to the observed mean of 0.57 pmol/m? (Fig. 8).
The only exceptions are ACCESS-ESM1-5, NorESMs and UKESM1-0-LL, which overestimate the dissolved iron in
Southern Ocean surface waters, except in some coastal regions around Antarctica (Fig. 7). No strong correlation is found
between the spatial deviation of chlorophyll and dissolved iron concentrations across the models, despite iron limitation
250 Dbeing a key factor controlling phytoplankton growth (Tagliabue et al., 2017). For example, the three MPI-ESM models
simulate low dissolved iron and have a high half-saturation coefficient for iron (3.6 pmol/m?), yet they significantly
overestimate chlorophyll concentrations (Fig. 1). Conversely, NorESM2-LM and NorESM2-MM models simulate higher
dissolved iron concentrations in the polar front zone and subantarctic zone, but their chlorophyll levels remain low in these
regions. CanESMS5 is excluded from dissolved iron comparison because it does not explicitly simulate dissolved iron;

255 instead, iron limitation on phytoplankton growth is parameterised through a functional relationship with nitrate.
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Figure 7: Observed surface dissolved iron concentrations from GEOTRACES and spatial biases of surface dissolved iron

concentrations for 14 CMIP6 models (model dissolved iron —- GEOTRACES dissolved iron) for the Southern Ocean (>30°S). Due

to the limited availability of observed data, all CMIP6 model outputs were regridded to match the spatial resolution of the
260 observational dataset, ensuring a consistent grid for comparison. Models with unavailable dissolved iron are labelled with *.

All models exhibit poor statistics for dissolved iron, with SSD less than 0.5, RMSD larger than 0.9, and CC values lower
than 0.4 (Fig. S4 & Table S4). Most models, except the CMCC-ESM2, CNRM-ESM2-1, IPSL-CM6A-LR, MIROC-ES2L,
and UKESM1-0-LL models, have negative CC values, indicating a distribution trend opposite to observations. Among them,
the MIROC-ES2L model performs relatively better, with an MBE of -0.06 pmol/m? (the fourth lowest among models), an
265 SSD closest to 1 (0.19), the lowest RMSD (0.91), and the largest positive CC (0.40) (Fig. S4 and Table S4). Despite these
findings, the evaluation of dissolved iron simulation remains uncertain due to the limited availability of observational data,

making it difficult to draw definitive conclusions about model performance in this regard.
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Figure 8: The mean bias errors in surface dissolved iron concentrations for the Southern Ocean (SO), the subtropical zone (STZ),
270  the subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. Models with unavailable dissolved
iron are labelled with *.

3.2 Performance of DCMs

The observational data from Copernicus indicates that DCMs are widespread across approximately 85% of the Southern
Ocean in austral summer (Fig. 9). Their occurrence frequency is lower in the SAZ (below 70%) but exceeds 90% in other
275 regions. Areas without DCMs are primarily located south of Australia, southwest of Chile, and in the Weddell and Ross Seas
and surrounding waters. CMIP6 models exhibit varying performance in simulating DCMs. GFDL-ESM4 has DCM
occurrence frequency close to 100% across the Southern Ocean (Fig. 10), while the CanESMS5 model simulates a DCM
frequency similar to observations, but its spatial distribution deviates from observations where we find no DCMs in the
Antarctic waters. CNRM-ESM2-1 simulates a high occurrence of DCMs in the STZ and AZ, but a low occurrence in the
280 SAZ and PFZ (Fig. 9). CMCC-ESM2, IPSL-CM6A-LR, and UKESM1-0-LL models simulate DCMs in the STZ but fail to
capture them south of the subtropical front (Fig. 9). The ACCESS-ESM1-5, CESM2, MIROC-ES2L, and the three MPI-
ESMs models sporadically simulate DCMs in the STZ, resulting in a low overall DCM frequency (<20% for the Southern
Ocean). The NorESM2-LM and NorESM2-MM models fail to simulate any DCMs. Among the remaining models,
CanESMS5, CNRM-ESM2-1, and GFDL-ESM4 exhibit DCM frequencies closest to observations. However, the CanESM5
285 and CNRM-ESM2-1 models are not considered reliable for representing DCMs due to their poor chlorophyll performance
(Figs. 1 and 2), which fails to reflect the actual distribution of the phytoplankton biomass in the water column, as chlorophyll
serves as a key indicator of phytoplankton abundance, despite their accurate DCM frequencies. Consequently, GFDL-ESM4
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model is identified as the best-performing model for DCM simulation, given its strong agreement with both DCM frequency

and its chlorophyll distribution.
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290
Figure 9: Observed chlorophyll concentration at deep chlorophyll maximum (DCM) depth during DJF for Copernicus
(observation) and 14 CMIP6 models in the Southern Ocean (>30°S). The colours in the maps indicate the chlorophyll
concentration at DCM depth, while white areas represent regions where no DCM occurred.
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295  Figure 10: The percentage of DCM occurrence in the Southern Ocean (SO), the subtropical zone (STZ), the subantarctic zone
(SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. All percentages in each region are calculated using area-
weighted averages.

3.3 Particulate organic carbon (POC)

Observed particulate organic carbon (POC) concentrations in the Southern Ocean are higher in Antarctic coastal waters and
300 lower at low latitudes (Fig. 11). Model simulations diverge markedly from this pattern. CMCC-ESM2, the three MPI-ESM
models, and UKESM1-0-LL generally overestimate POC across the basin, apart from CMCC-ESM2’s underestimation in
the subtropical zone, MPI-ESM-1-2-LR’s underestimation south of the subantarctic front, and UKESMI1-0-LL’s
underestimation in the AZ, yield MBEs of 12.1, 10.6, 28.8, 2.4, and 6.7 mg/m? (Fig. 12), respectively, versus the observed
mean of 70.4 mg/m>. The overestimated POC concentrations in three MPI-ESMs align with their significantly high
305 simulated chlorophyll concentrations (Fig. 1). In contrast, the remaining models, including ACCESS-ESM1-5, CanESMS5,
CESM2, CNRM-ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, and two NorESM models underestimate the
surface POC. CNRM-ESM2-1, GFDL-ESM4, and IPSL-CM6A-LR simulate nearly uniform values (regional means of 50 to
65 mg/m?), leading to large bias errors near Antarctica but small errors at lower latitudes (Fig. 12). NorESM2-LM and
NorESM2-MM overestimate POC in the subtropical zone while strongly underestimating it south of the subtropical front
310 (Fig. 12). ACCESS-ESMI1-5, CanESM5, CESM2, and MIROC-ES2L show the largest negative MBEs (40-50 mg/m?),

severely underrepresenting POC, especially at high southern latitudes.
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Figure 11: Observed yearly surface POC concentrations from Copernicus and spatial biases of yearly surface POC concentrations
for 14 CMIP6 models (model POC — Copernicus POC) for the Southern Ocean (>30°S). POC data in CMIP6 models contains
315 phytoplankton carbon, zooplankton carbon, and detrital organic carbon.

Among 14 CMIP6 models, CMCC-ESM2 and MPI-ESM-1-2-LR have the most realistic simulations. Both have small MBEs
(<13 mg/m?) and SSD closest to 1 (1.22 and 1.16; Fig. S5 and Table S5). The correlation coefficient of CMCC-ESM2 is the
highest (0.60), making it the best-performing model for representing POC. CNRM-ESM2-1, GFDL-ESM4,
IPSL-CM6A-LR, MPI-ESM-1-2-HAM, and MPI-ESM-1-2-HR show intermediate skill with weaker statistics, whereas
320 ACCESS-ESMI1-5, CanESMS5, MIROC-ES2L, NorESM2-LM, and NorESM2-MM are unreliable owing to large negative

biases, high RMSDs, and negative correlations.
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Figure 12: The mean bias errors in yearly surface POC concentrations for the Southern Ocean (SO), the subtropical zone (STZ),
the subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ). POC data in CMIP6 models contains
325 phytoplankton carbon, zooplankton carbon, and detrital organic carbon.

3.4 Model ranking

Based on the statistical evaluation of surface chlorophyll, nitrate, silicate, dissolved iron, and POC using MBE, SSD, RMSD,
and CC (Sect. 3.1 and 3.3), along with DCM occurrence frequency (Sect. 3.2), we computed a ranking of each variable and
an overall ranking for each model following the methodology described in Sect. 2.4. The results are presented in Fig. 13 as a
330 heat map. IPSL-CM6A-LR ranks the highest overall, placing within the top two models for all variable rankings except for
POC, for which it ranks fifth. GFDL-ESM4 follows closely, achieving top three rankings in all variables except dissolved
iron, where it ranks eighth. CMCC-ESM2 demonstrates strong performance in chlorophyll, DCM and POC (all rank in the
top three), but its lower scores for nutrient variables reduce its overall ranking to third. UKESM1-0-LL ranks fourth,
supported by its relatively balanced performance across all metrics. CNRM-ESM2-1, which also incorporates the PISCES-
335 v2 biogeochemical model (as in IPSL-CM6A-LR) also ranks fourth, with performance slightly below that of IPSL-CM6A-
LR across most variables. MIROC-ES2L, despite having the highest ranking for dissolved iron, ranks sixth due to weak
performance in other variables. The three MPI-ESM models, all coupled with HAMOCCS6, occupy the lowest three
positions, despite showing reasonable POC estimates. Models such as NorESM2-LM, CESM2, NorESM2-MM, ACCESS-
ESM1-5, and CanESMS5 fall into the middle tier, ranking from seventh to eleventh. In summary, IPSL-CM6A-LR and
340 GFDL-ESM4 emerge as the most robust models for simulating biogeochemical processes in the Southern Ocean, with

consistently performance across a range of biogeochemical parameters.
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Figure 13: Heat-map of performance ranks for 12 CMIP6 models. Columns list the evaluated variables—surface chlorophyll
(Chl), nitrate (NO3), silicate (Si), dissolved iron (dFe), particulate organic carbon (POC), deep-chlorophyll-maximum metrics

345 (DCM)—and an overall score (OVR, the mean of the six individual ranks). Rows list the models. Box colours and overlaid
numbers give the rank for each model-variable pair (1= best, higher numbers = poorer performance): reds indicate higher ranks,
blues lower ranks, and grey boxes indicate variables not available for that model.

4 Discussion

4.1 Vertical structure of carbon

350 Most CMIP6 models perform relatively well in simulating surface chlorophyll in the Southern Ocean, but they exhibit only
moderate skill in representing surface particulate organic carbon (POC). In contrast, the majority of models struggle to

accurately simulate the deep chlorophyll maxima (DCMs), which is crucial for capturing the vertical structure of chlorophyll
19
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distributions. As discussed in Sect3.2, models such as CanESM5, CNRM-ESM2-1, and GFDL-ESM4 reproduce the
horizontal frequency patterns of DCMs reasonably well. However, when surface chlorophyll performance is also considered,
GFDL-ESM4 emerges as the only model that satisfactorily represents both surface chlorophyll concentrations and DCM
frequency. This finding suggests that most CMIP6 models face challenges in simulating the vertical structure of chlorophyll,
as well as POC distributions.

To compare the vertical structure of chlorophyll and POC between models and observations, we integrated their
concentrations over the top 100m of the water column, where the majority of primary production occurs (Henley et al., 2020;
Arrigo et al., 2008). Unlike the surface chlorophyll and POC, which are generally close to observations, the vertically
integrated chlorophyll and POC in the upper 100m are significantly underestimated by most CMIP6 models, except
chlorophyll in MPI-ESM-1-2-HR and POC in CMCC-ESM2, both of which are overestimated (Fig. 14).
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Figure 14: Mean vertical profiles of chlorophyll during DJF (December—January—February) across the Southern Ocean (SO) and
its subregions: the Subtropical Zone (STZ), Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ), and Antarctic Zone (AZ), based
on observations (Copernicus) and 14 CMIP6 models. Solid lines represent chlorophyll profiles in different regions, while dashed
lines indicate the threshold depth of chlorophyll, defined as the depth at which chlorophyll concentration reaches 10% of the
maximum value.
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The underestimation of vertically integrated chlorophyll in the top 100 m ranges from —63% for CESM2 to —16% for GFDL-
370 ESM4 (Fig. 14) and is influenced by both surface chlorophyll concentrations and the vertical structure of the water column.
For example, ACCESS-ESM1-5, CESM2, NorESM2-LM, and NorESM2-MM exhibit similar vertical chlorophyll profiles,
characterised by low surface concentrations, almost no deep chlorophyll maxima (DCMs), and shallow chlorophyll threshold
depth (CTD; defined as the depth where chlorophyll falls to 10% of the maximum), resulting in underestimations exceeding
50% (Fig. 14). In contrast, MPI-ESM-1-2-HAM and MPI-ESM1-2-LR show high surface chlorophyll levels but extremely
375 shallow CTD (<50 m), leading to low vertically integrated chlorophyll. A third pattern is found in CanESMS5, CMCC-ESM2,
CNRM-ESM2-1, IPSL-CM6A-LR, MIROC-ES2L, and UKESM1-0-LL, which simulate appropriate threshold depths
(~150 m) and some occurrence of DCMs, but their low surface chlorophyll leads to insufficient primary production in the
water column. GFDL-ESM4 demonstrates a vertical structure most similar to observations, with a slightly shallower
threshold depth, resulting in only an 18% underestimation of integrated chlorophyll. While CMIP6 models vary widely in
380 their simulation of surface chlorophyll concentrations and generally manage to control these levels they largely lack the
capability to accurately simulate the vertical structure of chlorophyll, including both DCMs and CTD.
The vertical structure of chlorophyll and the formation of DCMs are influenced by various environmental and biological
factors. DCMs are primarily driven by photoacclimation, as the carbon to chlorophyll (C:Chl) ratio decreases from values
exceeding 100 g:g at the surface to below 50 at the base of euphotic layer (Marafion et al., 2021; Boyd et al., 2024).
385 Consequently, the poor representation of DCMs in ACCESS-ESM1-5 (with its coupled biogeochemical component
WOMBAT), the MPI-ESM models (coupled with HAMOCCS6), and the NorESM models (coupled with HAMOCC) is likely
due to their use of fixed C:Chl ratio (Oke et al., 2013; Ilyina et al., 2013; Tjiputra et al., 2020). This simplification prevents
the models from capturing photoacclimation processes, thereby limiting their ability to simulate realistic DCM structures.
Additionally, phytoplankton functional types (PFTs) significantly influence the vertical distribution of chlorophyll. For
390 instance, siliceous diatoms, which account for approximately 75% of primary production in the Southern Ocean (Crosta et
al., 2005), are not represented in ACCESS-ESM1-5 and CanESMS. This omission leads to the underestimation of
chlorophyll, particularly in the Antarctic zone (Fig. 14). CMIP6 models represent no more than three PFTs, typically small
phytoplankton, diatoms, and diazotrophs. In contrast, observational studies, such as Yingling et al. (2025), identify at least
five ecologically significant PFTs in the Southern Ocean, including Synechococcus, Picoeukaryotes, nanoplankton, diatoms,
395 and microplankton. This simplification of PFT diversity in CMIP6 models likely contributes to inaccurate chlorophyll
estimates and unrealistic vertical chlorophyll structures. Moreover, the vertical structure of chlorophyll is linked to the mixed
layer depth (MLD), which modulates nutrient supply (Duran-Campos et al., 2019; Zampollo et al., 2023). Our analysis
indicates a positive correlation between the CTD and MLD (Fig. S7a; R*=0.24, p=0.075), suggesting that deep mixing
enables phytoplankton to extend further into the water column while maintaining detectable concentrations (Mignot et al.,

400 2014). Conversely, the integrated chlorophyll within the upper 100m shows a negative correlation with MLD (Fig. S7b;
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R?=0.23, p=0.082), likely due to reduced light availability and dilution effects associated with deeper mixed layers
(Behrenfeld and Boss, 2006).

Furthermore, the occurrence frequency of DCMs exhibits a Gaussian-like relationship with MLD (Fig. S7c; R?=0.42),
peaking at MLD of 31 m. When the MLD is excessively shallow, nutrient replenishment to the euphotic zone is limited,

405 inhibiting phytoplankton growth below the surface, thereby reducing the likelihood of DCM formation (Letelier et al., 2004).
Conversely, when the MLD becomes too deep, light availability at depth decreases to levels insufficient for sustaining
phytoplankton biomass accumulation, which similarly suppresses DCM development (Mignot et al., 2014). Thus, the
observed distribution reflects a balance between light limitation from above and nutrient supply from below, a mechanism
well-documented in earlier studies (Cullen, 1982; Fennel and Boss, 2003).

410  Similar to chlorophyll, the vertical distribution of POC is significantly underestimated by most CMIP6 models (Fig. 14). In
this study, POC consists of four carbon pools: phytoplankton carbon, zooplankton carbon, detrital organic matter carbon, and
heterotrophic bacteria carbon. Observational estimates suggest an approximate partitioning of these pools in the Southern
Ocean at 20% phytoplankton, 37% zooplankton, 33% detritus, and 10% heterotrophic bacteria (Yingling et al., 2025; Liu et
al., 2025; Yang et al., 2022). However, the allocation among POC components varies across CMIP6 models.

415 Most models simulate integrated phytoplankton carbon reasonably well, with values comparable to observations, except for
MPI-ESM1-2-HR and UKESMI1-0-LL, which show significant overestimation (Table S6). The general agreement in
phytoplankton carbon across the models contrasts sharply with the widespread underestimation of integrated chlorophyll,
suggesting that models may be applying high C:Chl ratio below the surface. Integrated zooplankton carbon is substantially
underestimated (Table S6), likely due to oversimplified zooplankton physiology and trophic structure. Only a few models,

420 such as CMCC-ESM2, CNRM-ESM2-1, GFDL-ESM4, TPSL-CM6A-LR, and UKESMI1-0-LL, include more than two
zooplankton types, and many may apply low growth and grazing efficiency (Rohr et al., 2023), contributing to low biomass
estimates.

Detrital organic carbon shows the widest range of discrepancies. For example, CMCC-ESM2 overestimates detritus by more
than threefold compared to observations, while GFDL-ESM4 and three MPI-ESMs simulate less than 2% of the observed

425  values (Table S7). In contrast, CNRM-ESM2-1, IPSL-CM6A-LR, and UKESM1-0-LL provide detritus concentrations that
align well with observations (Table S7). The success of CNRM-ESM2-1 and IPSL-CM6A-LR is attributed to their use of the
PISCES-v2 model, which offers a detailed carbon pool structure, including small and large size particulate organic detritus
with size-dependent sinking rates and complex exchanges with dissolved organic carbon (DOC) (Aumont et al., 2015).
UKESM1-0-LL’s high detritus levels may result from elevated phytoplankton and zooplankton concentrations, potentially

430 driven by a high C:Chl ratio and the absence of a DOC pool (Sellar et al., 2019). In contrast, the low detritus levels in
GFDL-ESM4 and MPI-ESMs may result from a lack of exchange between DOC and particulate detritus (Stock et al., 2020;
Ilyina et al., 2013). This structural limitation can result in unrealistically low detritus levels, especially under strong

remineralisation conditions, and when the exudation and residual matter from phytoplankton and zooplankton are directed
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primarily into the DOC pool rather than contributing to particulate detritus pool. While NorESMs share the same
435 biogeochemical framework as the MPI-ESMs, their relatively higher detritus levels may stem from parameter tuning specific
to HAMOCC (Tjiputra et al., 2020). CESM2 adopts a more simplified approach, lacking an explicit detritus tracer. This
means there is no time lag between surface production and deep remineralisation, leading to unrealistic vertical carbon
fluxes. Other models, such as ACCESS-ESM1-5, CanESMS, and MIROC-ES2L, employ a basic NPZD (nutrient-
phytoplankton-zooplankton-detritus) framework, which simplifies the marine food web and organic carbon cycling (Oke et
440 al., 2013; Zahariev et al., 2007; Hajima et al., 2020).
Only CMCC-ESM2 and GFDL-ESM4 simulate an explicit bacteria pool, and their integrated bacterial carbon concentrations
are reasonably consistent with observational estimates (Table S7). Including bacteria is important in biogeochemical models,
as it allows dynamic regulation of remineralisation and other microbial processes based on bacteria biomass. Furthermore,
bacteria contribute significantly to carbon export, highlighting their importance as a key component for future model

445  development and improvement.

4.2 Model components and their performance

The performance of CMIP6 models in simulating key biogeochemical variables such as chlorophyll, nitrate, silicate,
dissolved iron, POC and DCMs is jointly determined by the complexity of the biogeochemical (BGC) module, the adopted
parameterisations of key biogeochemical processes, and the resolution of their coupled ocean and atmosphere model.

450 Among these, the complexity of the BGC module is the most crucial factor. Key aspects include the representation of
phytoplankton functional types (PFTs), stoichiometry flexibility, and nutrient uptake and regeneration schemes. Models that
incorporate multiple PFTs, particularly those distinguishing between diatoms and non-diatom phytoplankton, tend to
outperform models with a single phytoplankton type in simulating chlorophyll and overall biogeochemical patterns (Fig.
15a; p<0.01). In contrast, the inclusion of diazotrophs has a limited impact on chlorophyll performance, as nitrate is rarely

455  limiting in the Southern Ocean (Fig. 15b; p=0.17).
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Figure 15: Panels show statistical relationships between model rankings and key biogeochemical descriptors: (a) surface
chlorophyll ranking vs. inclusion of diatom; (b) surface chlorophyll ranking vs. inclusion of diazotroph; (c¢) DCM frequency
ranking vs. use of a variable C:Chl ratio; (d) POC ranking vs. presentation of silica cycling ( presence of an explicit Si pool or
460 variable C:Si ratio); (e) silicate ranking vs silicate half-saturation coefficient (Kmsi); (f) nitrate ranking vs. nitrate half-saturation
coefficient (Kmno3); (g) dissolved iron ranking vs. iron half-saturation coefficient (Kmre); (h) dissolved iron ranking vs. iron
chemistry complexity (simple-no ligand, simple ligand, or complex ligand scheme); (i) DCM frequency ranking vs model ability to
assimilate ammonium for photosynthesis. (a), (b), (¢), (i) are performed using T-test, (d) and (h) are performed using ANOVA
(Analysis of Variance), (e), (f), (g) are performed using linear regression. Tests applied: two-sample t-tests for (a), (b), (c), (i); one-
465 way ANOVA for (d), (h); linear regression for (e)—(g). Each point (colour/shape) represents a CMIP6 model, and dashed lines
indicate regression fits where relevant. Corresponding P-values and R? statistics (for regressions) are displayed on each panel.

Cellular plasticity (stoichiometry) plays a vital role in regulating nutrient uptake and the cellular elemental composition
under variable environmental conditions. Most models employ fixed carbon:nitrogen:phosphorus (C:N:P) ratios consistent

with the Redfield Ratio, while carbon:iron ratios are generally dynamic. However, carbon:chlorophyll and carbon:silicate
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470 ratios vary across models. A dynamic carbon:chlorophyll ratio significantly improves the simulation of DCM (Fig. 15¢c;
p<0.01), as mentioned in Sect. 4.1, while a variable carbon:silicate ratio enhances POC representation (Fig. 15d; p=0.03),
especially given the dominance of diatoms Southern Ocean primary production (Crosta et al., 2005).

Phytoplankton growth in models is typically limited by light and nutrient availability, often represented using Michaelis-
Menten kinetics (Michaelis and Menten, 1913). However, our analysis did not reveal a clear relationship between model

475  performance in simulating surface chlorophyll or DCMs and specific light or nutrient uptake parameters, such as initial PI
(production-irradiance) slope or half-saturation coefficients for nitrate, silicate, and dissolved iron. This suggests that
chlorophyll distribution is governed by a complex interplay of environmental drivers rather than any single parameter. In
contrast, nutrient concentrations are more directly influenced by process parameterisation. For example, higher silicate half-
saturation coefficients (e.g. 8 mmol/m?® in PISCES-v2, as used in CNRM-ESM2-1 and IPS-CM6A-LR) spear to improve

480 silicate simulations (Fig. 15e; R?=0.52, p=0.01) (Nelson et al., 2001). Similarly, nitrate half-saturation coefficients in the
range of 1-3 mmol m= tend to yield better agreement with observations (Fig. 15f; R?=0.36, p=0.02) (Eppley et al., 1969).
For dissolved iron, no clear correlation was found between model performance and the half-saturation coefficient (Fig. 15g;
R?=0.00, p=0.86). The complexity of the iron cycle contributes to variability in simulated dissolved iron performance (Fig.
15h; p<0.01). Models with more advanced iron chemistry, such as PISCES-v2 (BGC model coupled in CNRM-ESM2-1 and

485 IPSL-CM6A-LR), which includes strong and weak ligands, and five iron forms (free Fe(Il), Fe(Ill), Fe(Ill) bounded to
strong and weak ligands, and particulate iron) tend to simulate dissolved iron more accurately than those with simple iron
complexation (Tagliabue et al., 2023). In contrast, models with simple iron complexation schemes do not show strong ability
to simulate better iron concentrations than a simple iron model, which only contains basic iron processes such as scavenging.
These inconsistencies are likely due to the limited spatial and temporal coverage of iron observations, which hinders robust

490 evaluation and may mask the benefits of advanced iron cycling mechanisms. Additionally, the utilisation of ammonium
appears to promote the formation of DCMs (Fig. 15i; p<0.01), as ammonium-primarily produced through remineralisation-is
more readily and rapidly assimilated by phytoplankton than nitrate. This is due to its lower energy and electron requirements
for incorporation into cellular biomass. Consequently, substantial ammonium production by heterotrophic bacteria in the
subsurface can enhance phytoplankton growth and contribute to the development of DCMs (Boyd et al., 2024).

495 We also found that the resolution of the ocean component in ESMs can influence the performance of simulated
biogeochemical variables. For example, MPI-ESM1-2-HR and MPI-ESM1-2-LR, both coupled with the same
biogeochemical model (HAMOCCS), differ significantly in ocean resolution 0.4° vs 1.5°, respectively, and show notable
differences in biogeochemical performance. The mean surface chlorophyll concentration in austral summer is 2.37 mg/m? in
MPI-ESM1-2-HR, compared to 1.35mg/m? in MPI-ESM1-2-LR which is closer to the Copernicus chlorophyll dataset.

500 These discrepancies may arise from resolution-induced differences in ocean circulation and physical conditions, which
influence nutrient availability, light penetration, and phytoplankton dynamics. In contrast, variations in atmospheric model

resolution appear to have a limited impact on ocean biogeochemistry. For instance, NorESM2-MM and NorESM2-LM,
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which use the same ocean biogeochemical model (HAMOCC) but differ in atmospheric resolution (2° vs 1°), exhibit nearly
identical biogeochemical outcomes such as mean austral summer surface chlorophyll concentrations of 0.56 and 0.55 mg/m?,
505 respectively. These findings suggest that while higher ocean resolution can improve the realism of physical processes

affecting biogeochemical simulations, it does not necessarily guarantee better biogeochemical performance.

4.3 Avenues for improvement in biogeochemical representation

This study provides a comparative assessment of several ocean biogeochemical indicators for 14 CMIP6 ESMs over the
Southern Ocean. Although some models performed adequately, there remain several key directions for future improvements:

510 e  The representation of key biogeochemical processes in most BGC models remains simplified or parameterised
based on limited observations. For instance, differences in the phytoplankton functional types (PFTs), elemental
composition (fixed or variable stoichiometry), and nutrient uptake parameterisation contribute to model divergence.
Future models should incorporate a more complex marine food web, and more dynamic parameterisations informed
by field and laboratory experiments, especially under Southern Ocean specific conditions.

515 e As the key factor controlling the Southern Ocean primary production, iron cycles and their representations remain
poor in most models, compared to limited iron sampled data. Improvements in the simulation of iron sources (e.g.,
dust deposition, sediment resuspension), bioavailability (i.e., more complex iron chemistry module such as
including iron-binding ligands), and biological recycling are essential to help reduce the bias in simulated
chlorophyll.

520 e Most models lack a good representation of the vertical structure of chlorophyll and biomass. For example, come
models have discrepancies in mixed layer depth and other physical properties simulation, which influences nutrient
supply. There is also an oversimplified remineralisation by heterotrophic bacteria, and lack of diversity of PFTs.
Future efforts could expand the model structure to capture these ecological dynamics, which are particularly
important in determining vertical profiles and export efficiency for biomass.

525 e Observational constraints remain limited, especially for subsurface variables such as DCMs, dissolved iron, and
POC and its classification. Future work should prioritise the integration of additional in situ datasets to validate and
improve model parameterisations. Ensemble data assimilation or machine learning approaches could also be

explored for model tuning.

5 Conclusion

530 This study evaluated the performance of key biogeochemical variables, including austral summer surface chlorophyll and
deep chlorophyll maxima (DCMs), nitrate, silicate, dissolved iron, and annual particulate organic carbon (POC) across 14

CMIP6 models in the Southern Ocean (south of 30°S). The results reveal substantial variability in model skill. While some
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models demonstrated strong performance, others showed significant over- or underestimations. Among them, GFDL-ESM4
was the most effective in reproducing surface chlorophyll and DCM features, while IPSL-CM6A-LR excelled in simulating
535 nutrient distribution, particularly nitrate and silicate. MIROC-ES2L performed best for dissolved iron, and CMCC-ESM2
provided the most accurate representation of POC. Based on aggregated performance across all variables, the top five
models for simulating Southern Ocean biogeochemistry were IPSL-CM6A-LR, GFDL-ESM4, CMCC-ESM2, UKESM1-0-
LL, and CNRM-ESM2-1. Our analysis highlights a common limitation across CMIP6 models: the underrepresentation of
vertical biogeochemical structures, including DCMs and subsurface POC distributions. Additionally, spatial mismatches and
540 persistent biases, particularly for dissolved iron and POC, underscore the need for targeted model improvements. Overall,
this study not only provides a comprehensive evaluation of model performance for key biogeochemical variables but also
offers insights into areas requiring refinement. These insights can guide future model development and support more
informed model selection. Enhancing the representation of biogeochemical processes in Earth system models is essential for

improving projections of the Southern Ocean's role in the global carbon and nutrient cycles under ongoing climate change.

545 Code availability

All codes for regridding datasets and data analysis are available at https:/github.com/mingcheng7/Evaluation-CMIP6-

historical.

Data availability

Raw CMIP6 used in this study are available on the Earth System Grid Federation (ESGF) Nodes for the CMIP6 Archive at
550 https://esgf.github.io/nodes.html (Cinquini et al., 2014). Copernicus Global Ocean 3D Chlorophyll-a Concentration,
Particulate  Backscattering  coefficient and Particulate Organic Carbon Product can be accessed at
https://doi.org/10.48670/moi-00046 (Sauzeéde et al., 2016). The World Ocean Atlas (WOA) 2018 data can be accessed at
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (Garcia et al., 2019). The GEOTRACES dissolved iron data can
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